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S1 INTRODUCTION
Under the ray picture of light, light consists of “luminous” corpus-
cles. As such a particle evolves by propagating and interacting with
optical systems, it traces a “light ray”. A particle’s position andmo-
mentum, i.e. the particle’s direction of propagation, serve as a com-
plete description of the light ray at a particular instant. Therefore,
it is convenient to study the dynamics of ray optics in phase space:
a 2𝑛-dimensional space that consists of 𝑛 independent position co-
ordinates, as well as 𝑛 momenta coordinates (often referred to as
the canonically conjugate variables). A ray, at a particular instant,
corresponds to a point in phase-space. This phase-space pictorial
view of light is adopted, sometimes implicitly, by rendering theory:
we perform point queries in phase space by tracing rays from a
particular point, in a particular direction.
The concept of “locality” then becomes central to our discussion:

Ray optics permits a precise, simultaneous knowledge of position
andmomentum.This perfect localization iswhat enables us tomake
use of spatial-subdivision acceleration structures for ray tracing,
even achieving real-time performance.
On the other hand, under wave optics such locality is not possi-

ble. In wave optics, the basic descriptor of light is the wave func-
tion, which is the spatial function of the complex excitations of the
underlying electric field, and the momentum space becomes the
Fourier space. It is well known that a function and its Fourier con-
jugate (the Fourier transformed function) cannot both have finite
support, leading to an uncertainty relation: position and momen-
tum may not be both specified with perfect precision. Therefore, in
sharp contrast to ray optics, where the descriptor of light—a ray
or a collection of rays—is local, the wave function and its Fourier
conjugate serve as a global description of light. This loss of locality
in wave optics nullifies our ability to perform simple point queries
in phase space, and indeed this inherent uncertainty is a major dif-
ficulty in devising a formalism of wave-optics rendering.
A rich history of research focuses on attempts to restore, to a

degree, that “grainy” phase-space view of ray optics. Most notably,
the Wigner distribution function [Wigner 1932] (also known as the
Wigner-Ville distribution in mathematics) is a complete descrip-
tor of light that simultaneously provides information about both
the spatial and angular spectrum properties of the wave function.
Thereby, the Wigner distribution function serves to define the dy-
namics of wave optics in a phase space. For a more comprehensive
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discussion onWigner optics, as well as the role theWigner distribu-
tion function plays in wave and quantum optics, the curious reader
is referred to Testorf et al. [2010]; Torre [2005].

In this supplemental material, we will overview the Hamilton-
ian optics formalism of ray optics. We will then briefly “quantize”
ray optics in-order to obtain wave optics. The Wigner distribution
function will then be presented, and we will discuss its relevant
properties. Then, we will identify the wave-optical analogue of the
classical ray, and discuss the formal conditions under which point-
wise sampling of the wave-optical phase space is possible. We will
also show how optical coherence arises naturally when sampling a
collection of such “wave-optical rays”.

S2 RAY OPTICS
Hamiltonian optics are developed from Fermat’s principle—the prin-
ciple of extremal action, which in the optical context means the ex-
tremal optical path. Specifically, the path taken by a light ray from
point ®𝒒1 to point ®𝒒2 fulfils

𝛿

∫ ®𝒒2

®𝒒1

d𝑠 𝜂
(
®𝒒′

)
= 0 , (S2.1)

with𝜂 being the refractive index of themedium and 𝑠 the arc length.
That is, the path where the optical path length (path length times
refractive index) is an extremum or is stationary, therefore the ray
path must follow the refractive-index gradient:

d
d𝑠

[
𝜂
(
®𝒒
) d®𝒒
d𝑠

]
= ∇𝜂

(
®𝒒
)
. (S2.2)

The above is reminiscent of Newton’s second law, hence a ray be-
haves as a classical point particle, with the refractive-index of the
medium serving as the mass of the particle. A force ∇𝜂 acts upon
this particle, thereby light bends—traces an Eikonal—as it propa-
gates through a refractive-index graded medium.

From Eq. (S2.2) we recognize the light particle’s momentum as

®𝒑 ≜ 𝜂
(
®𝒒
) d®𝒒
d𝑠

. (S2.3)

The momenta ®𝒑 are the canonically conjugate variables to the posi-
tion variables ®𝒒, and are the optical direction cosines (ray direction
scaled by the refractive index). We denote the vector

®𝒖 (𝑠) ≜
(
®𝒒
®𝒑

)
(S2.4)

as a ray. The ray ®𝒖 lives in phase-space: a vector space defined as
the cartesian product of the position and momentum space. The
dynamics of that ray, as it evolves w.r.t. 𝑠 , are quantified by the
Hamiltonian

𝐻
(
®𝒒, ®𝒑 ; 𝑠

)
= −

√
𝜂2

(
®𝒒
)
− 𝑝2 , (S2.5)
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and Hamiltonian’s equations
d𝑞𝛽
d𝑠

=
𝜕𝐻

𝜕𝑝𝛽
and

d𝑝𝛽
d𝑠

= − 𝜕𝐻

𝜕𝑞𝛽
, (S2.6)

with 𝛽 ∈ {𝑥,𝑦, 𝑧}.
The above can be recast in operator notation into

d
d𝑠

®𝒖 = H®𝒖 , (S2.7)

with H ≜
∑

𝛽∈{𝑥,𝑦,𝑧}

[
𝜕𝐻

𝜕𝑝𝛽

𝜕

𝜕𝑞𝛽
− 𝜕𝐻

𝜕𝑞𝛽

𝜕

𝜕𝑝𝛽

]
. (S2.8)

Eq. (S2.7) is the ray equation, an operator-valued differential first-
order equation, and H is the Lie operator associated with the op-
tical Hamiltonian 𝐻 . The ray equation yields the closely-related
Eikonal equation, as well as the Snell’s law of refraction and the
law of reflection at an interface between two media.
The solution to the ray equation, representing the evolution of

the ray from 𝑠0 to some 𝑠 , can be written via the ray-transfer oper-
ator T :

®𝒖 (𝑠) = T ®𝒖 (𝑠0) , with T ≜ e(𝑠−𝑠0 )H . (S2.9)

The exponential map above maps the Lie algebra {H} into the cor-
responding symplectic Lie group of ray-transfer operators.

Linear optical systems and quadratic Hamiltonian. When the light
rays propagate roughly in the same direction, say the 𝑧-axis, we
take a paraxial view: The ray evolution variable 𝑠 is replaced with
𝑧, and ®𝒒, ®𝒑 become 2-dimensional vectors that live on the 𝑥𝑦-plane
at a particular instant 𝑧 = 𝑧′ of a ray’s evolution. Paraxiality implies
𝑝2𝑥 + 𝑝2𝑦 � 𝜂2, hence the optical Hamiltonian 𝐻 (Eq. (S2.5)) can be
written in the quadratic approximation:

𝐻
(
®𝒒, ®𝒑 ; 𝑧

)
= 1

2𝜂( ®𝒒) 𝑝
2 − 𝜂

(
®𝒒
)
. (S2.10)

An interesting special case of paraxial optical systems are sim-
ple systems, where H does not dependant on 𝑧. Such systems are
known as linear optical systems, or “ABCD” systems. The latter
refers to the fact that T can be written in the following block-
structural form:(

®𝒒(𝑧)
®𝒑(𝑧)

)
= T

(
®𝒒(𝑧0)
®𝒑(𝑧0)

)
=

(
𝑨 𝑩
𝑪 𝑫

) (
®𝒒(𝑧0)
®𝒑(𝑧0)

)
, (S2.11)

with 𝑨,𝑩, 𝑪,𝑫 being 2 × 2 real matrices, and for non-absorbing
systems |T | = 1.

ABCD systems are of particular interest, as they include prop-
agation, and reflection and refraction of light at simple interfaces,
as well as curved interfaces (like lenses). For example, propagation
through a medium with constant refractive-index, or focusing by a
thin lens, admit the following ray-transfer matrices

Tpropagation =

(
1 𝑑

𝜂

0 1

)
and Tthinlens =

(
1 0
1
𝑓 1

)
, (S2.12)

respectively. We use scalars for the ABCD elements of the matrices
above to indicate that these systems are rotationally-invariant. 𝑑 is
the (scaled) distance of propagation, and 𝑓 is the focal length of the
lens.

S2.1 An Ensemble of Rays and Liouville’s Theorem
The discussion above centred upon the dynamics of a single ray.
We now extend the discussion to a statistical ensemble of rays. Let
𝜌 (®𝒒, ®𝒑 ; 𝑧) be the ray density function, which is a probability den-
sity function quantifying the statistical distribution of rays over
phase space. Given an arbitrary function of position and momen-
tum 𝑓 (®𝒒, ®𝒑), the average value of 𝑓 over the entire statistical en-
semble of rays is

〈𝑓 〉 =
∫

d2®𝒒 d2 ®𝒑 𝑓
(
®𝒒, ®𝒑

)
𝜌
(
®𝒒, ®𝒑 ; 𝑧

)
, (S2.13)

with the integration over the entire phase space of the system at
instant 𝑧. The function 𝑓 can be understood as an “observable”, for
example, the response of a camera sensor to light, or the reflectivity
of a surface.

It can be shown that the dynamics of 𝜌 are
𝜕

𝜕𝑧
𝜌 = −H𝜌 (S2.14)

d
d𝑧

𝜌 = 0 , (S2.15)

which in Hamiltonian dynamics are referred to as Liouville’s equa-
tion and Liouville theorem, respectively. The above illustrates im-
portant physics: Eq. (S2.14) means that the ray density evolves (up
to a sign) just as a singular ray. As a mental model, the “optical
flow” of light rays in phase-space can be thought of as the motion
of an incompressible fluid. The total quantity of that fluid is the op-
tical flux, while the phase-space volume occupied by that fluid is
known as the Étendue. Liouville theorem (Eq. (S2.15)) implies that
the ray density in phase-space is a conserved quantity (ignoring
absorption), both locally and globally:

• That “optical fluid” being incompressible means that Étendue
is conserved, i.e. the optical fluid may move around in phase-
space, but the volume it occupies is unchanged, leading to
global conservation of density.

• Given any distinguished ray (®𝒒, ®𝒑), the density 𝜌 (®𝒒, ®𝒑 ; 𝑧) in
an infinitesimal volume around that ray can be understood
as a property of that ray, and propagates along the ray’s tra-
jectory, i.e. remains conserved locally around that ray as the
system evolves.

If, at some particular instant of evolution 𝑧, we “scoop” some of the
“optical fluid” out of the system, then the Étendue may decrease.
Étendue may only increase if we add additional fluid into the sys-
tem (i.e., inject optical flux).

Wemay relate the above to classical radiometry: the well-known
radiometric radiance is defined as

𝐿 = 𝜂2
𝜕Φ

𝜕𝐺
, (S2.16)

that is, the (differential) total quantity of fluid—the optical flux Φ—
over the (differential) volume this fluid occupies—the Étendue 𝐺 .
Thewell-known conservation of basic radiance, viz. 𝐿/𝜂2, in simple,
non-absorbing optical systems, is then an immediate consequence
of Liouville theorem.

A more comprehensive formulation of Hamiltonian optics can
be found in the textbooks: Buchdahl [1993] and Bass et al. [2009].
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S3 WAVE OPTICS
It is possible to recover aspects of ray optics as a limiting case of
wave optics (specifically, the Helmholtz equation reduces to the
Eikonal equation at the limit ℏ → 0). However, wave optics can-
not be formulated from ray optics purely via mathematical anal-
ysis. Instead, wave optics is typically brought forth from classi-
cal ray optics in a manner analogous to how quantum mechan-
ics arises from classical Hamiltonian mechanics, and we briefly re-
trace these steps: A heuristic approach known as “quantization” (or
“wavization”), first proposed separately by both Dirac and Heisen-
berg in different variations, is designed to obtain a quantum theory
from a classical theory, hence quantization is a mapping between
the theories. Quantization works by replacing the classical func-
tions 𝑓 (𝑞, 𝑝) on phase space with operators (“observables”) 𝒇 , act-
ing upon wave functions, as well as replacing the classical dynamic
laws (e.g., Eq. (S2.6)) with quantum dynamics.

Our starting point is a general classical non-relativistic particle
with Hamiltonian

𝐻
(
®𝒒, ®𝒑

)
=

𝑝2

2𝑚
+𝑉

(
®𝒒
)
, (S3.1)

where𝑚 is mass and 𝑉 is the potential function. The canonical po-
sition and momenta variables (Eq. (S2.3)) are mapped to their oper-
ator counterparts

𝑞 ↦→ �̂� ≜ 𝑞 and 𝑝 ↦→ �̂� ≜ −iℏ 𝜕

𝜕𝑞
. (S3.2)

The Hamiltonian operator then becomes

Ĥ(�̂�, �̂�) = − ℏ2

2𝑚
∇2
®𝒒 +𝑉

(
®𝒒
)
, (S3.3)

with ∇2
®𝒒 being the Laplacian w.r.t. the spatial variable ®𝒒.

Switching to the optical context, we note that the classical qua-
dratic optical Hamiltonian, Eq. (S2.10), is of the form of Eq. (S3.1),
with 𝑚 = 𝜂 and 𝑉 = −𝜂. Then, applying the mapping in Equa-
tion (S3.2),

Ĥ(�̂�, �̂�) = − ℏ2

2𝜂
(
®𝒒
) ∇2

®𝒒 − 𝜂
(
®𝒒
)

(S3.4)

becomes the quadratic wave-optical Hamiltonian operator.
We denote ψ(®𝒒 ; 𝑡) as thewave function, with ®𝒒 being spatial posi-

tion and 𝑡 time.Thewave function is a complex function that serves
as a descriptor of light under the wave-optical context (it may be
understood as the excitations of the underlying electric field). The
evolution of the wave function is dictated by a time-evolution op-
erator

ψ
(
®𝒒 ; 𝑡

)
= Û (𝑡, 𝑡0)ψ

(
®𝒒 ; 𝑡0

)
. (S3.5)

The time-evolution operator must fulfil the Schrödinger wave equa-
tion:

iℏ
𝜕

𝜕𝑡
Û = ĤÛ , (S3.6)

which takes a form reminiscent of its classical counterpart (Eq. (S2.7)),
with time 𝑡 nowplaying the role of the classical paraxial system evo-
lution variable 𝑧. The Helmholtz equation of classical wave optics
can be derived from the wave equation above.

We may identify the momentum space as the Fourier-conjugate
of the position space: recognizing the eigenfunctions of �̂� as ei®𝒒· ®𝒌 ,
we may write

ψ
(
®𝒒
)
=

1

(2π) 3
2

∫
d3®𝒌 ψ̃

(
®𝒌
)
ei®𝒒·

®𝒌 , (S3.7)

with the appropriate normalization constant added. The above is
simply the inverse Fourier transform of ψ̃(®𝒌). Therefore, in wave
optics it is often convenient to introduce the frequency operator

�̂� ≜
1
ℏ
�̂� , (S3.8)

and we refer to ψ̃(®𝒌) as the Fourier-conjugate of the wave function,
with ®𝒌 = 1

ℏ ®𝒑 being the wavevector, i.e. | ®𝒌 | = 𝜂 2π
𝜆 is the wavenum-

ber, where 𝜆 is the wavelength.

Uncertainty relation. Without loss of generality, assume that the
signals ψ, ψ̃ are centred (zero mean). The variances of these signals,
along a particular axis, say 𝑥 , are

𝜎2𝑞𝑥 ≜
∫

d3®𝒒𝑞2𝑥
��ψ (

®𝒒
) ��2 , (S3.9)

𝜎2𝑘𝑥 ≜
∫

d3®𝒌 𝑘2𝑥
���ψ̃(

®𝒌
)���2 . (S3.10)

Then, the Fourier relation between position and momentum, out-
lined by Eq. (S3.7), and a bit of analysis, gives rise to the important
uncertainty relation:

𝜎𝑞𝑥𝜎𝑘𝑥 ≥ 1
2
. (S3.11)

The uncertainty relation implies that the wave function and its con-
jugate cannot both be precisely localized in space.

ABCD optical systems and line-spread kernels. Let ψ(®𝒒 ; 𝑧) be
some wave function, under the paraxial approximation. Under the
special case where the Hamiltonian Ĥ is not 𝑧-dependant (i.e., lin-
ear optical systems), the solution to the evolution of the system
(Eq. (S3.5))

Û (𝑧, 𝑧0) = exp
(
−i𝑧 − 𝑧0

ℏ
Ĥ

)
, (S3.12)

can be rewritten (due to the linearity of the above) via a line-spread
function acting on the wave function, viz.

ψ(®𝒒 ; 𝑧) =
∫

d2®𝒒′ 𝑔
(
®𝒒, ®𝒒′

)
ψ(®𝒒′ ; 𝑧0) . (S3.13)

Note that time 𝑡 is replaced by 𝑧 as the system’s evolution variable,
under the paraxial setting. For Hamiltonians that admit only qua-
dratic monomials in �̂�, �̂�, it can be shown that [Torre 2005]

𝑔
(
𝑞, 𝑞′

)
=

√
−i

2πℏ𝐵
exp

[
i
1

2ℏ𝐵

(
𝐷𝑞2 +𝐴𝑞′2 − 2𝑞𝑞′

)]
, (S3.14)

where separation into dimensions is implied. It can be shown that
the conjugate ψ̃ transforms in similar manner to ψ, but the 𝑘-space
(frequency space) 𝐴𝐵𝐶𝐷 parameters relate to the 𝑞-space (position
space) via(

𝐴 𝐵
𝐶 𝐷

)
𝑘
=

(
0 1
−1 0

) (
𝐴 𝐵
𝐶 𝐷

)
𝑞

(
0 −1
1 0

)
. (S3.15)
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The above is the kernel of a linear canonical transform, which
generalizes Fresnel transforms and fractional Fourier transforms.
Therefore, any diffraction problem that can be solved via Fourier
optics tools or the Huygens-Fresnel principle is, in fact, an ABCD
system. The parametrization of the ABCD variables, from the ray-
transfer matrix (Eq. (S2.11)) to the wave-optical line-spread func-
tion (Eq. (S3.14)), changes as 𝐵 ↦→ ℏ𝐵 and 𝐶 ↦→ 1

ℏ𝐶 , due to the
remapping from 𝑝-space to 𝑘-space (Eq. (S3.8)).

Summary. As we transition from ray optics to wave optics, the
position-momentum identification of a ray ®𝒖 = ®𝒒, ®𝒑 is replaced
by the optical wave function and its conjugate ψ, ψ̃ as the de-
scriptor of light. However, while under ray optics the precise and
simultaneous specification of a ray’s position and momentum is
possible, the uncertainty relation implies that in wave optics, such
a local specification is not possible. Therefore, while a ray is a lo-
cal descriptor of light, the wave function and its conjugate serve
as a global descriptor. Indeed, a (non-zero) wave function ψ or its
conjugate ψ̃ will always admit infinite support.
The dynamics of the relevant systems are governed by the ray

equation or wave equation. The special case of ABCD systems are
of special interest for us, as these include the majority of the light
transport (not accounting for interaction with materials) around a
typical scene (perfect reflections and refractions, including curved
surfaces, like lenses, and propagation in media with constant or
slowly-varying refractive-index).
In attempt to regain a classical-like view of a wave optical sys-

tem, where position-momentum pairs can be locally sampled, we
will next introduce a wave-optical phase space. Crucially, we will
show that point-queries in that wave-optical phase space evolve in
identical fashion to their classical counterparts, under interaction
by ABCD optical systems.

S3.1 The Wigner Distribution and the Wave-Optical
Phase Space

TheWigner distribution function (WDF) [Wigner 1932] is defined as

𝒲
(
®𝒒, ®𝒌

)
≜

1

(2π)3
∫

d3®𝒒′ ψ★
(
®𝒒 − ®𝒒′

2

)
ψ

(
®𝒒 + ®𝒒′

2

)
e−i®𝒒

′ · ®𝒌

≜
1

(2π)3
∫

d3®𝒌′ ψ̃★
(
®𝒌 −

®𝒌′

2

)
ψ̃

(
®𝒌 +

®𝒌′

2

)
ei®𝒒·

®𝒌
′
, (S3.16)

with both definitions equivalent. The WDF belongs to the wider
Cohen’s class [Cohen 1994] of bilinear signal representations. Being
a joint representation of the wave function both in 𝑞-space and 𝑘-
space, the WDF gives rise to a wave-optical phase space. In this
subsection, we will analyze the relevant properties of theWDF, and
in-turn the wave-optical dynamics in this induced phase space. It
is possible to recover the wave function, up to a phase term, from
the WDF via an inverse transform.
When ψ is understood as a stochastic process—a statistical en-

semble of waves—then a definition of the WDF in terms of the en-
semble average is possible:

𝒲
(
®𝒒, ®𝒌

)
≜

1

(2π)3
∫

d3®𝒒′ C
(
®𝒒 − ®𝒒′

2
, ®𝒒 + ®𝒒′

2

)
e−i®𝒒

′ · ®𝒌 , (S3.17)

where C is the cross-spectral density of light: the space-frequency
formulation of optical coherence. Clearly, as theWDF and the cross-
spectral density function are Fourier pairs, they contain the same
information, and one can be recovered unequivocally from the other.
For completeness, we explicitly note the inverse transform:

C
(
®𝒒 − 1

2 ®𝒙, ®𝒒 + 1
2 ®𝒙

)
=

∫
d3®𝒌′𝒲

(
®𝒒, ®𝒌′

)
ei
®𝒌
′
®𝒙 , (S3.18)

or, equivalently, if we define ®𝒒1,2 = ®𝒒 ∓ 1
2 ®𝒙 :

C
(
®𝒒1, ®𝒒2

)
=

∫
d3®𝒌′𝒲

( ®𝒒1 + ®𝒒2
2

, ®𝒌′
)
ei
®𝒌
′ ( ®𝒒2−®𝒒1) . (S3.19)

It should be stressed that Eq. (S3.16) and Eq. (S3.17) are employed
under different contexts: the former when we deal with a deter-
ministic wave function, while the latter when the underlying field
is modelled as a stochastic process. For more information about op-
tical coherence theory, see Mandel and Wolf [1995]; Wolf [2007].

Given an arbitrary observable 𝒇 (�̂�, �̂�), its expectation value is〈
𝒇
〉
ψ =

〈
ψ
��𝒇 ��ψ〉

=
∫

d3®𝒒 ψ★
(
®𝒒
)
𝒇
(
�̂�, �̂�

)
ψ
(
®𝒒
)
. (S3.20)

It is possible to map the observable 𝒇 to its corresponding “clas-
sical” phase-space function 𝑓 (®𝒒, ®𝒌) via the Wigner-Weyl transform
[Cohen 1966]. Given such a pair, 𝒇 and 𝑓 , the expectation value of
the observable, i.e. Eq. (S3.20), can be recast as〈

𝒇
〉
ψ =

∫
d3®𝒒 d3®𝒌 𝑓

(
®𝒒, ®𝒌

)
𝒲

(
®𝒒, ®𝒌

)
, (S3.21)

which takes a similar form to the expectation of an observable w.r.t.
the classical ray density 𝜌 (Eq. (S2.13)). Note that Eq. (S3.20) is for-
mulated in terms of operators, while Eq. (S3.21) is written in terms
of c-functions, typically yielding a simpler expression that is more
amenable to analytic tools. The WDF then serves a role similar to
the classical ray density 𝜌 : it allows us to “ask wave-optical ques-
tions”, but in a manner resembling classical phase-space queries.

The properties of Wigner distribution function. The WDF fulfils
most of the postulates expected from a phase-space density func-
tion.

(I) Realness — 𝒲 ∈ R.
(II) Marginals — the position and momentum densities are

the corresponding marginals of the WDF:��ψ (
®𝒒
) ��2 = ∫

d3®𝒌𝒲
(
®𝒒, ®𝒌

)
(S3.22)���ψ̃(

®𝒌
)���2 = ∫

d3®𝒒𝒲
(
®𝒒, ®𝒌

)
. (S3.23)

(III) Unit measure — if the wave function is normalized, viz.∫
d3®𝒒 |ψ(®𝒒) | 2 = 1 then theWDF integrates to one over the entire

phase space: ∫
d3®𝒒 d3®𝒌𝒲

(
®𝒒, ®𝒌

)
= 1 . (S3.24)

The converse holds as well. In general, the WDF can be normal-
ized as

∫
d®𝒒 d®𝒌𝒲 = 0 if and only if ψ ≡ 0.
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(IV) Galilei invariance — theWDF is invariant underGalilean
transformations:

ψ′
(
®𝒒
)
= ψ

(
®𝒒 + ®𝒒′

)
=⇒ 𝒲′

(
®𝒒, ®𝒌

)
= 𝒲

(
®𝒒 + ®𝒒′, ®𝒌

)
(S3.25)

ψ̃′
(
®𝒌
)
= ψ̃

(
®𝒌 + ®𝒌′

)
=⇒ 𝒲′

(
®𝒒, ®𝒌

)
= 𝒲

(
®𝒒, ®𝒌 + ®𝒌′

)
. (S3.26)

(V) Support — Given convex 𝑆𝑞, 𝑆𝑘 ⊆ R3 such that

∀®𝒒 ∉ 𝑆𝑞, ψ
(
®𝒒
)
= 0 and ∀®𝒌 ∉ 𝑆𝑘 , ψ̃

(
®𝒌
)
= 0 ,

the WDF vanishes outside these volumes as well:

𝒲
(
®𝒒, ®𝒌

)
≠ 0 only if

(
®𝒒, ®𝒌

)
∈ 𝑆𝑞×𝑆𝑘 . (S3.27)

That is, the support of the WDF in 𝑞-space and 𝑘-space is the
support of ψ and ψ̃, respectively.
(VI) Liouville transformation laws —under the paraxial ap-

proximation, given a quadratic Hamiltonian (with only quadratic
monomials in �̂�, �̂�), the WDF obeys:

𝜕

𝜕𝑧
𝒲

(
®𝒒, ®𝒌 ; 𝑧

)
= −H𝒲

(
®𝒒, ®𝒌 ; 𝑧

)
(S3.28)

d
d𝑧

𝒲
(
®𝒒, ®𝒌 ; 𝑧

)
= 0 , (S3.29)

i.e. the Liouville’s equation and Liouville theorem of Hamiltonian
mechanics, viz. Eqs. (S2.14) and (S2.15), and note thatH above is
the classical Hamiltonian of ray optics (Eq. (S2.8)). Also note that,
as before, under the paraxial setting 𝑧 replaces 𝑡 as the system
evolution variable, and the𝑞 and𝑘-spaces are now 2-dimensional,
meaning the phase space becomes 4-dimensional.
(VII) Superposition — Given wave functions ψ1 and ψ2, the

WDF of the superposition ψ = ψ1 + ψ2 is

𝒲 = 𝒲1 +𝒲2 + 2 Re𝒲12 , (S3.30)

where𝒲12 is the cross-term:

𝒲12

(
®𝒒, ®𝒌

)
≜

1

(2π)3
∫

d3®𝒒′ ψ★1
(
®𝒒 − ®𝒒′

2

)
ψ2

(
®𝒒 + ®𝒒′

2

)
e−i®𝒒

′ · ®𝒌 .

(S3.31)

The above highlights the bilinearity of the WDF.

Moments. Important information about the underlyingwave func-
tions, and the optical beams these wave functions encode, can be
gleaned from theWDF moments. The total energy contained in the
beam is

𝐸 ≜
∫

d3®𝒒
��ψ (

®𝒒
) ��2 = ∫

d3®𝒒 d3®𝒌𝒲
(
®𝒒, ®𝒌

)
. (S3.32)

Clearly, whenwe understand theWDF strictly as a (quasi-)probability
density function, then we only consider 𝐸 = 1. First-order moments
(mean) are (

�̄�
�̄�

)
≜

1
𝐸

∫
d3®𝒒 d3®𝒌

(®𝒒
®𝒌

)
𝒲

(
®𝒒, ®𝒌

)
. (S3.33)

Second-ordermoments give information about the gyration of beam
energy about themean, in position and frequency spaces.The second-
order moments are grouped into the real, symmetric moments ma-
trix of the WDF:

𝑴 ≜
©«
𝑚𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧 𝑚𝑥�̃� 𝑚𝑥�̃� 𝑚𝑥𝑧

𝑚𝑦𝑥 𝑚𝑦𝑦 𝑚𝑦𝑧 𝑚𝑦�̃� 𝑚𝑦�̃� 𝑚𝑦𝑧

· · · · · ·
𝑚𝑧𝑥 𝑚𝑧𝑦 𝑚𝑧𝑧 𝑚𝑧�̃� 𝑚𝑧�̃� 𝑚𝑧𝑧

ª®®®¬
≜

1
𝐸

∫
d3®𝒒 d3®𝒌

[(®𝒒
®𝒌

)
−

(
�̄�
�̄�

)] [(®𝒒
®𝒌

)
−

(
�̄�
�̄�

)]⊺
𝒲

(
®𝒒, ®𝒌

)
, (S3.34)

where subscripts of the matrix elements𝑚𝜉𝜁 are unaccented or ac-
cented with a tilde to indicate 𝑞-space or 𝑘-space axes, respectively.
The second-order moments on the main diagonal of 𝑴 provide in-
formation about the width of the beam in phase space, i.e. both in
position and frequency spaces. Our interest lies primarily in these
main diagonal moments. Mixed moments are used in the optical lit-
erature to characterize beam twist, curvature as well as beam qual-
ity. Furthermore, mixed moments quantify the longitudinal compo-
nents of the orbital angular momentum.

Transformation of the WDF. The properties above suggest that
the WDF can, to a degree, be understood as the classical phase-
space density function 𝜌 . A point-query of the wave-optical phase
space, viz.𝒲(®𝒒, ®𝒌), then can be understood as a “ray”, and we write
𝒲(®𝒖), with ®𝒖 = ®𝒒, ®𝒌 resembling its ray optical analogoue (i.e.
Eq. (S2.4)). Property (VI) then implies that the WDF transforms in
a manner similar to a classical ray under interaction with an ABCD
optical system:

𝒲(®𝒖 ; 𝑧) = 𝒲
(
T −1®𝒖 ; 𝑧0

)
, (S3.35)

where the matrix T is the appropriate ABCD ray-transfer matrix
(Eq. (S2.11)), though note that it should be transformed to 𝑞-𝑘 rep-
resentation of the phase space, from the 𝑞-𝑝 representation of the
ray optical phase space, as discussed in Section S3.

Eq. (S3.35) means that a point-query ®𝒖 in the wave-optical phase
space (a “ray”) transforms just as its ray-optical analogue, under
quadratic Hamiltonian wave optics. Of particular interest is the fact
that the WDF moments matrix (Eq. (S3.34)) also transforms via the
ray-transfer matrix, as:

𝑴 (𝑧) = T 𝑴 (𝑧0)T
⊺
, (S3.36)

on interaction with an ABCD optical systems.

The negativity of the WDF. One postulate of a probability density
function not fulfilled by the WDF is non-negativity. The WDF may
take negative values, a consequence of the uncertainty relation:The
quantization process employed to promote the symplectic ray op-
tics to metaplectic wave optics serves to quantize phase space into
cells (the volume of which is dictated by the uncertainty relation,
Eq. (S3.11)). These cells are not discrete cells with “sharp” bound-
aries, but overlap and interact with each other, therefore points
within a phase-space cell do not constitutemutually-exclusive prob-
ability events (violating the 𝜎-additivity of a probability measure),
hence the WDF is only a quasi-probabilistic density function.
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It can be shown that anisotropic Gaussian Schell-model (AGSM)
beams are the only class of wave functions that admit non-negative
Wigner distribution functions. Furthermore, AGSM beams have the
most compact support in phase space (occupy the least phase space
volume) relative to any other wave function.Thus, a Gaussian beam
can be understood as an elementary construct that is the closest
analogue of the classical ray: serving as a form of a “generalized
ray” with non-singular extent in position and momentum spaces.
It should be noted that a superposition of a pair of AGSM beams
does not, in general, yield a non-negative WDF: the bilinearity of
the WDF gives rise to cross-terms on superposition (Property (VII)
above), and it is these interference terms that are the source of neg-
ative values.
See Bastiaans [1978]; Testorf et al. [2010] for additional discus-

sion and applications of the WDF in optics.

S4 WAVE-OPTICS LIGHT TRANSPORT
The wave-optical phase space that arises via the Wigner distribu-
tion function admits attractive properties: it facilitates performing
phase-space queries in a manner similar to classical ray optics, and
these “rays” transform inline with Liouville’s equations for ABCD
optical systems. However, the WDF is not non-negative, frustrat-
ing its interpretation as an energy density. Furthermore, the WDF
tends to be highly oscillatory: a consequence of the Fourier-like
relation in the definition of the WDF (Eq. (S3.16)). As an example,
consider a sample signal𝛷 , and its WDF 𝒲𝛷 , and let a wave func-
tion be composed of two spatially- and frequency-shifted copies of
this signal:

ψ
(
®𝒒
)
= 𝛷

(
®𝒒 − ®𝒒1

)
ei
®𝒌1 · ®𝒒 +𝛷

(
®𝒒 − ®𝒒2

)
ei
®𝒌2 · ®𝒒 , (S4.1)

where ®𝒒1,2 and ®𝒌1,2 are the spatial and frequency shifts, respectively.
Using the shift properties of the WDF (Property (IV)), the WDF of
the wave function above is trivially:

𝒲
(
®𝒒, ®𝒌

)
=𝒲𝛷

(
®𝒒 − ®𝒒1, ®𝒌 − ®𝒌1

)
+𝒲𝛷

(
®𝒒 − ®𝒒2, ®𝒌 − ®𝒌2

)
+ 2 Re

[
e
i
(
®𝒌1−®𝒌2

)
· ®𝒒−i( ®𝒒1−®𝒒2) · ®𝒌

′ ]
𝒲𝛷

(
®𝒒′, ®𝒌′

)
, (S4.2)

with the shorthands ®𝒒′ = ®𝒒− 1
2 (®𝒒1+®𝒒2) and ®𝒌

′
= ®𝒌− 1

2 (®𝒌1+®𝒌2). Note
the complex exponent in the cross-term above: it is a heavily oscilla-
tory term at optical frequencies (𝑘 � 0), with frequencies that grow
greater as the separation in phase space between the two𝛷 signals
increases. Hence, if light is composed of multiple partially-coherent
components, as these propagate and their separation increases, the
WDF becomes increasingly oscillatory.

The WDF as a “generalized radiance”. As a brief aside, we note
that the WDF was used to derive wave-optical radiometric quanti-
ties, in particular the radiance, first by Walther [1968]. Other defi-
nitions of such generalized radiances have been proposed, usually
using other Cohen class joint space-frequency representations. A
generalized radiance—in the form of the WDF—was also used in
computer graphics to propagate partially-coherent fields.
However, it was shown that no such generalized radiance fulfils

all the expected postulates: for example, it is not non-negative, or
isn’t conserved on non-paraxial propagation, or it is not a faithful

representation of the signal (e.g., Property (II) does not hold). In
general, such representations serve only as quasi-probability dis-
tributions. Furthermore, being “wasteful” representations (are of
double the dimensionality of the represented signal), in practical
applications only a restricted parametrized class of functions are
used. But under this constraint, there is no value to using the WDF
as opposed to the cross-spectral density of light directly (which
then is parameterized by the Fourier-conjugated class of functions).
Whichever representation of light we chose to use, once we de-
cide to quantify partially-coherent fields explicitly, we always suf-
fer from the “sampling problem” (see Steinberg et al. [2022] and
Section 1 in the paper), where backward path tracing is difficult, as
importance sampling light-matter interactions require information
about the coherence of light.

Instead of using the WDF as a descriptor of light, we are inter-
ested in the phase space that arises via the WDF. We would like
to find a wave-optical analogue of the classical ray, formally dis-
cuss when the wave-optical phase space can adequately sampled
via such “rays”, and analyze the dynamics of these “rays”. These
rays facilitate a coherent-mode decomposition of light, allowing us
to reason about the partially-coherent light that is of primary inter-
est for us in rendering in a “classical” manner.

S4.1 Gaussian Beams as Rays
The Husimi Q representation. To combat the unattractive cross-

terms that arise in the WDF on superposition of waves, the WDF
can be convolved in phase spacewith a kernel function (aCohen ker-
nel), masking out the interference terms and producing a different
representation. It can be shown that a convolution with a multivari-
ate Gaussian, with position and frequency variances satisfying the
uncertainty relation (Eq. (S3.11)), produces a representation that is
strictly non-negative. The resulting distribution is known as the
Husimi Q distribution:

𝒬
(
®𝒒, ®𝒌

)
≜

1

π3

∫
d3®𝒒′ d3®𝒌′𝒲

(
®𝒒′, ®𝒌′

)
e−

1
2 ®𝒖

′⊺ΣΣΣ−1 ®𝒖′
, (S4.3)

with ®𝒖′ ≜
(®𝒒 − ®𝒒′
®𝒌 − ®𝒌′

)
and

√
|ΣΣΣ| = 1

23
,

where ΣΣΣ is any positive-definite covariance matrix of the Gaussian
low-pass filter that fulfils the above.

A wave-optical “ray”. Consider the WDF that takes the form of a
Dirac delta in phase space, viz.𝒲r = 𝛿3 (®𝒒 − ®𝒒0) 𝛿3 (®𝒌 − ®𝒌0), which
is an aphysical construct that represents an idealised “ray” at posi-
tion ®𝒒0 with momentum ®𝒑0 = ℏ®𝒌0. We stress that such a WDF is
fictitious: it cannot arise from any physically-realizable wave func-
tion. However, its corresponding Husimi Q representation 𝒬r , that
arises from 𝒲r via Eq. (S4.3), is physical. Let the covariance take
the block-diagonal form ΣΣΣ = diag{ΣΣΣ𝑞,ΣΣΣ𝑘 }, then:

𝒬r

(
®𝒒, ®𝒌 ; 𝑡0

)
=

1

π3
e−

1
2 ®𝒒

′⊺ΣΣΣ−1𝑞 ®𝒒′− 1
2
®𝒌
′⊺
ΣΣΣ−1𝑘

®𝒌
′
, (S4.4)

which represent the phase space “picture” of the ray at an initial
time 𝑡0 of the system evolution. The shorthands ®𝒒′ = ®𝒒 − ®𝒒0 and
®𝒌′ = ®𝒌 − ®𝒌0 are the shifted coordinates. Clearly, this system is fully
defined by its first 2 moments: the mean �̄� (𝑡0) = ®𝒒0, ®𝒌0, and the
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moment matrix (Eq. (S3.34))𝑴 (𝑡0) = ΣΣΣ. The time evolution follows
Eq. (S3.36):

�̄� (𝑡) = T
(
𝑡, 𝑡 ′

)
�̄� (𝑡 ′) , and (S4.5)

𝑴 (𝑡) = T
(
𝑡, 𝑡 ′

)
𝑴 (𝑡 ′)T

(
𝑡, 𝑡 ′

)⊺
, (S4.6)

for 𝑡 ≥ 𝑡 ′. For example, on propagation in amediumwith a constant
refractive-index 𝜂, viz.

Tpropagation
(
𝑡, 𝑡 ′

)
=

(
1 𝑡−𝑡 ′

𝜂 ℏ𝑐
0 1

)
, (S4.7)

(elements represent 3× 3matrices) which represents a phase space
horizontal shear, with 𝑐 being the speed of light. Hence, the evolu-
tion effectively constitutes propagating the centre-of-mass in phase
space (mean) in direction ®𝒌0 and spreading the spatial Gaussian
footprint w.r.t. the variance in frequency.
Substitute the “smoothedWDF”𝒬r of an idealised ray (Eq. (S4.4))

into the definition of the WDF (Eq. (S3.16)) and invert the trans-
form:

ψr
(
®𝒒 ; 𝑡0

)
=

1

ψ★r
(
®𝒒0 ; 𝑡0

) ∫
d3®𝒌′𝒬r

( ®𝒒 + ®𝒒0
2

, ®𝒌′ ; 𝑡0
)
ei
®𝒌
′
·( ®𝒒−®𝒒0)

=

√
23 |ΣΣΣ𝑘 |
π3

e−i®𝒌0 · ®𝒒′

ψ★r
(
®𝒒0 ; 𝑡0

) e− 1
8 ®𝒒

′⊺ΣΣΣ−1𝑞 ®𝒒′− 1
2
®𝒌
′⊺
ΣΣΣ𝑘 ®𝒌

′
. (S4.8)

The value of the wave function at ®𝒒0 is (up to a constant phase
factor) computed via the respective marginal (Property (II) in Sub-
section S3.1):��ψr

(
®𝒒0 ; 𝑡0

) ��2 =∫
d3®𝒌′𝒬r

(
®𝒒0, ®𝒌

′
; 𝑡0

)
=

√
23 |ΣΣΣ𝑘 |
π3

. (S4.9)

Plugging the above into Eq. (S4.8) yields the wave function that is
the closest analogue to the Dirac delta in phase space, i.e. a gener-
alized ray:

ψr
(
®𝒒 ; �̄�

)
=

(
23 |ΣΣΣ𝑘 |
π3

) 1/4
ei𝜑e−i

®𝒌0 · ®𝒒′
e
− 1

8 ®𝒒
′⊺

(
ΣΣΣ−1𝑞 +4ΣΣΣ𝑘

)
®𝒒′
, (S4.10)

where we slightly abuse notation and make the mean �̄� = ®𝒒0, ®𝒌0
at current time 𝑡 explicit, with shifted position shorthand ®𝒒′ =
®𝒒 − ®𝒒0, as before, and 𝜑 ∈ R being an arbitrary initial phase. The
evolution of that wave function to 𝑡 ≥ 𝑡0 is dictated by Eqs. (S4.5)
and (S4.6). The above should be understood as the wave function
that corresponds to the ray ®𝒖 = �̄�. Being a Gaussian beam, ψr is
indeed a subclass of AGSM beams, and it has the most compact
support possible in phase space, as discussed.

Coherent-modes phase-space decomposition. It is well-known that
an arbitrary function in 𝐿1 can be approximated arbitrary well by
a finite sum of shifted Gaussians with identical variance (an im-
mediate consequence of the Wiener’s Tauberian theorem). In other
words, multivariate Gaussians serve as an overcomplete functional
basis. Therefore, the Husimi Q representation 𝒬 of an arbitrary
WDF can be written as

𝒬 =
∞∑
𝑗=1

𝐸 𝑗 𝒬r

����
�̄� 𝑗 ,𝑴

, (S4.11)

i.e. a superposition of the Husimi Q representations of generalized
rays, all with the same moment matrix 𝑴 but shifted via different
means �̄� 𝑗 . The moment matrix must fulfil the Husimi Q condition
|𝑴 | = 1

23 , but otherwise is chosen at will, we may set𝑴 (𝑡0) = 1√
2
𝑰

initially, for simplicity. 𝐸 𝑗 > 0 are the energies contained in each
generalized ray. Positive energies are only possible because 𝒬 is
always non-negative.

S4.2 Optical coherence
It is insightful to study how partially-coherent field effects arise un-
der our formulation. Let C be the cross-spectral density of light, and
𝒲 its corresponding WDF. The 3 × 3 spatial-coherence covariance
matrix—termed the shape matrix—around a spatial point ®𝒒 can be
written as:

ΘΘΘ
(
®𝒒
)
=

1

C
(
®𝒒, ®𝒒

) ∫
d3®𝒒′ ®𝒒′®𝒒′⊺ C

(
®𝒒 − 1

2
®𝒒′, ®𝒒 + 1

2
®𝒒′

)
=

1��ψ (
®𝒒
) ��2 ∫

d3®𝒒′ ®𝒒′®𝒒′⊺
∫

d3®𝒌′𝒲
(
®𝒒, ®𝒌′

)
ei®𝒒

′ · ®𝒌
′
. (S4.12)

Formally-interchange the orders of integration, and note that∫
d3®𝒒′ ®𝒒′®𝒒′⊺ei®𝒒

′ · ®𝒌
′
= −(2π)3 𝜕2

𝜕®𝒌′2
𝛿3

(
®𝒌′

)
, (S4.13)

i.e., the Hessian matrix of the Dirac delta. Then, for “well-behaved”
𝒲:

ΘΘΘ
(
®𝒒
)
= − (2π)3��ψ (

®𝒒
) ��2 ∫

d3®𝒌′𝒲
(
®𝒒, ®𝒌′

) 𝜕2

𝜕®𝒌′2
𝛿3

(
®𝒌′

)
= − (2π)3��ψ (

®𝒒
) ��2 [

𝜕2

𝜕®𝒌′2
𝒲

(
®𝒒, ®𝒌′

)]
®𝒌
′
=0

, (S4.14)

that is, the Hessian (w.r.t. the frequency variable) of the WDF, eval-
uated at ®𝒒 and ®𝒌 = 0.

As mentioned, the cross-spectral density function and the WDF
contain the same information (being Fourier-transform pairs), how-
ever we have shown that spatial-coherence is dictated by the be-
haviour of the WDF in frequency-space only, furthermore, for Gauss-
ian signals the covariance of spatial coherence around a point ®𝒒 is
proportional to the inverse of covariance of angular spread of light
at ®𝒒.

S4.3 Generalized Rays as Coherent States
TheHusimi Q representation (Eq. (S4.3)) spreads every point of the
WDF in phase space into the minimum footprint that can be re-
solved. While this procedure yields a strictly non-negative distri-
bution (unlike the corresponding WDF 𝒲), 𝒬 still remains only a
quasi-probability density function, because it no longer reproduces
the marginals of the underlying wave function (i.e., Property (II) no
longer holds).

In quantummechanics, theGaussian construct defined in Eq. (S4.4),
which we termed a generalized ray, is known as a coherent state. We
have shown that these coherent states decompose the Husimi Q
representation. However, as the WDF is not non-negative, we may
not write the WDF as a sum of coherent states (with non-negative
intensities), in a manner similar to the Husimi Q representation.
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This means that our observables, when working with the Husimi Q
representation and coherent states, are no longer the position and
momentum operators of the underlying wave function.
It might then appear that a generalized ray does not correspond

to observable properties of light. However, it well known that co-
herent states are the eigenstates of the photon creation and annihi-
lation operators [Mandel andWolf 1995]. Essentially all our sensors
operator via the process of photoelectric detection, i.e. by absorbing
photons, hence it is the artefacts of photoelectric detection that we ob-
serve. Being eigenstates of the photon annihilation operator, coher-
ent states then closely correspond to light properties measured via
photoelectric detection [Mandel and Wolf 1995]. Generalized rays,
under the coherent-modes decomposition outlined via Eq. (S4.11),
then correspond to the observable response of photoelectric detec-
tors.

S4.4 Propagation of Generalized Rays
Consider a generalized ray, with its phase space distribution quan-
tified by Eq. (S4.4) and wave function as in Eq. (S4.10). It is easy
to see that the expectations of its position and frequency operators
(Eqs. (S3.2) and (S3.8)) are

〈�̂�〉 = 〈ψr |�̂� |ψr 〉 =
∫

d3®𝒒 ®𝒒 |ψr |2 = ®𝒒0 , (S4.15)〈
�̂�
〉
=

〈
ψr

���̂���ψr

〉
= −i

∫
d3®𝒒 ψ★r

𝜕

𝜕®𝒒
ψr = ®𝒌0 , (S4.16)

as expected. The variances are also trivially calculated,〈
�̂�2

〉
− 〈�̂�〉2 =

〈
ψr

���̂�2��ψr

〉
− 〈�̂�〉2

=
∫

d3®𝒒 ®𝒒2 |ψr |2 − ®𝒒0®𝒒
⊺
0 = ΣΣΣ𝑞 , (S4.17)〈

�̂�
2
〉
−

〈
�̂�
〉2

=
〈
ψr

����̂�2���ψr

〉
−

〈
�̂�
〉2

= −
∫

d3®𝒒 ψ★r
𝜕2

𝜕®𝒒2
ψr − ®𝒌0®𝒌

⊺
0 = ΣΣΣ𝑘 . (S4.18)

Finally, the covariance matrices are selected such that they fulfil
the equality in the uncertainty relation, viz.��〈�̂�2〉 − 〈�̂�〉2

�� 12 ���〈�̂�2〉 − 〈
�̂�
〉2��� 12 =

√��ΣΣΣ𝑞 ��|ΣΣΣ𝑘 | = 1

23
, (S4.19)

illustrating that a generalized ray initially occupies the least phase-
space volume permissible.
Let that generalized ray propagate a distance of 𝑧 in free space.

In phase space, this constitutes a horizontal shear, as described
(Eq. (S4.7)), hence the generalized ray’s phase-space distribution af-
ter propagation can be expressed in terms of its initial distribution,
viz.

𝒬r

(
®𝒒, ®𝒌 ; 𝑧

)
=𝒬r

(
®𝒒 − 𝑧

𝑘
®𝒌, ®𝒌 ; 𝑧 = 0

)
. (S4.20)

The first and second moments become

〈�̂�〉
����
𝑧
= ®𝒒0 +

®𝒌0
𝑘
𝑧 ,

(〈
�̂�2

〉
− 〈�̂�〉2

)����
𝑧
= ΣΣΣ𝑞 + 𝑧2

𝑘2
ΣΣΣ𝑘 , (S4.21)〈

�̂�
〉 ����

𝑧
= ®𝒌0 ,

(〈
�̂�
2
〉
−

〈
�̂�
〉2)����

𝑧
= ΣΣΣ𝑘 . (S4.22)

The mean position has been translated by a distance of 𝑧 in direc-
tion ®𝒌0, spatial variance is increased (i.e., the beam occupies greater
spatial extent), while the frequency operator moments remain un-
changed, as expected in free space. We may then define the width
(i.e. spatial variance) of the generalized ray as

𝑤 (𝑧) ≜ ΣΣΣ𝑞 + 𝑧2

𝑘2
ΣΣΣ𝑘 . (S4.23)

Induced correlation. It is of particular insight to consider the cor-
relation between the position and frequency operators for a gen-
eralized ray. Initially, a coherent state (generalized ray) is uncor-
related, meaning that the covariance matrix ΣΣΣ of its phase space
Gaussian is defined to be block diagonal, with no correlation arising
between position and momentum. We will show that propagation
induces correlation.

To simplify the analysis, we consider only the one-dimensional
case, and denote the initial variances 𝜎2

𝑞,𝑘
= |ΣΣΣ𝑞,𝑘 | . These vari-

ances fulfil the equality in the uncertainty relation, which in the
one-dimensional case reads 𝜎𝑞𝜎𝑘 = 1

2 . The correlation between po-
sition and frequency can then be written as

𝜛𝑞𝑘 ≜

〈
�̂��̂�

〉
+

〈
�̂��̂�

〉
− 2 〈�̂�〉

〈
�̂�
〉

2
(〈
�̂�2

〉 〈
�̂�
2
〉) 1

2

=
𝑧√

4𝑘2𝜎4𝑞 + 𝑧2
, (S4.24)

and we may now write the product of the variances in position and
frequency space as��〈�̂�2〉 − 〈�̂�〉2

�� 12 ���〈�̂�2〉 − 〈
�̂�
〉2��� 12 ����

𝑧
=

√(
𝜎2𝑞 + 𝑧2

𝑘2
𝜎2
𝑘

)
𝜎2
𝑘

=

√
1
4
+ 𝑧2

42𝑘2𝜎4𝑞
=

1
2

√
4𝑘2𝜎4𝑞 + 𝑧2

2𝑘𝜎2𝑞
=

1
2

1√
1 −𝜛2

𝑞𝑘

, (S4.25)

where we use the fact 𝜎2
𝑘
= 1

4𝜎2
𝑞
.

Observe, that when 𝑧 = 0, no correlation arises, i.e.𝜛𝑞𝑘 = 0, how-
ever after propagation, 𝑧 > 0, the uncertainty between position and
frequency is increased by the positive factor (1 − 𝜛2

𝑞𝑘
)−1/2. In the

limit 𝑧 → ∞, we may see that 𝜛𝑞𝑘 = 1 implying that uncertainty is
infinite, and that the generalized ray occupies infinite phase-space
volume. While a generalized ray in its initial state serves as a co-
herent state (as discussed in Subsection S4.3), after propagation it
becomes a correlated coherent state (a form of a squeezed coher-
ent state). As also noted by Man’ko and Wolf [2008], we may con-
clude that propagation induces correlation between position and
momentum, and this correlation serves to enlarge the Heisenberg
uncertainty constant ℏ by a factor of (1−𝜛2

𝑞𝑘
)−1/2 (as evident from

Eq. (S4.25)).
The induced correlation on propagation reduces our ability to

resolve phase-space details via generalized rays after propagation.
In other words, the phase space becomes increasingly “blurred” as
we propagate away from a sensor. Intuitively, it may be understood
as saying that the farther objects are from the sensor, the harder it
is to resolve the object’s features. It also means that we may not
“break” a generalized ray into smaller rays after propagation, but
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can only use generalized rays that fulfil the uncertainty relation
scaled by the induced correlation factor (1 −𝜛2

𝑞𝑘
)−1/2.
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